146 research outputs found

    “What is it like to be a bat?”—a pathway to the answer from the integrated information theory

    Get PDF
    What does it feel like to be a bat? Is conscious experience of echolocation closer to that of vision or audition? Or do bats process echolocation nonconsciously, such that they do not feel anything about echolocation? This famous question of bats' experience, posed by a philosopher Thomas Nagel in 1974, clarifies the difficult nature of the mind–body problem. Why a particular sense, such as vision, has to feel like vision, but not like audition, is totally puzzling. This is especially so given that any conscious experience is supported by neuronal activity. Activity of a single neuron appears fairly uniform across modalities and even similar to those for non-conscious processing. Without any explanation on why a particular sense has to feel the way it does, researchers cannot approach the question of the bats' experience. Is there any theory that gives us a hope for such explanation? Currently, probably none, except for one. Integrated information theory has potential to offer a plausible explanation. IIT essentially claims that any system that is composed of causally interacting mechanisms can have conscious experience. And precisely how the system feels is determined by the way the mechanisms influence each other in a holistic way. In this article, I will give a brief explanation of the essence of IIT. Further, I will briefly provide a potential scientific pathway to approach bats' conscious experience and its philosophical implications. If IIT, or its improved or related versions, is validated enough, the theory will gain credibility. When it matures enough, predictions from the theory, including nature of bats' experience, will have to be accepted. I argue that a seemingly impossible question about bats' consciousness will drive empirical and theoretical consciousness research to make big breakthroughs, in a similar way as an impossible question about the age of the universe has driven modern cosmology

    Phenomenology without conscious access is a form of consciousness without top-down attention

    Get PDF
    We agree with Block's basic hypothesis postulating the existence of phenomenal consciousness without cognitive access. We explain such states in terms of consciousness without top-down, endogenous attention and speculate that their correlates may be a coalition of neurons that are consigned to the back of cortex, without access to working memory and planning in frontal cortex

    A unified framework for information integration based on information geometry

    Full text link
    We propose a unified theoretical framework for quantifying spatio-temporal interactions in a stochastic dynamical system based on information geometry. In the proposed framework, the degree of interactions is quantified by the divergence between the actual probability distribution of the system and a constrained probability distribution where the interactions of interest are disconnected. This framework provides novel geometric interpretations of various information theoretic measures of interactions, such as mutual information, transfer entropy, and stochastic interaction in terms of how interactions are disconnected. The framework therefore provides an intuitive understanding of the relationships between the various quantities. By extending the concept of transfer entropy, we propose a novel measure of integrated information which measures causal interactions between parts of a system. Integrated information quantifies the extent to which the whole is more than the sum of the parts and can be potentially used as a biological measure of the levels of consciousness

    Continuous flash suppression reduces negative afterimages

    Get PDF
    Illusions that produce perceptual suppression despite constant retinal input are used to manipulate visual consciousness. Here we report on a powerful variant of existing techniques, continuous flash suppression. Distinct images flashed successively at approx10 Hz into one eye reliably suppress an image presented to the other eye. The duration of perceptual suppression is at least ten times greater than that produced by binocular rivalry. Using this tool we show that the strength of the negative afterimage of an adaptor was reduced by half when it was perceptually suppressed by input from the other eye. The more completely the adaptor was suppressed, the more strongly the afterimage intensity was reduced. Paradoxically, trial-to-trial visibility of the adaptor did not correlate with the degree of reduction. Our results imply that formation of afterimages involves neuronal structures that access input from both eyes but that do not correspond directly to the neuronal correlates of perceptual awareness

    Depth of interocular suppression associated with continuous flash suppression, flash suppression, and binocular rivalry

    Get PDF
    When conflicting images are presented to the corresponding regions of the two eyes, only one image may be consciously perceived. In binocular rivalry (BR), two images alternate in phenomenal visibility; even a salient image is eventually suppressed by an image of low saliency. Recently, N. Tsuchiya and C. Koch (2005) reported a technique called continuous flash suppression (CFS), extending the suppression duration more than 10-fold. Here, we investigated the depth of this prolonged form of interocular suppression as well as conventional BR and flash suppression (FS) using a probe detection task. Compared to monocular viewing condition, CFS elevated detection thresholds more than 20-fold, whereas BR did so by 3-fold. In subsequent experiments, we dissected CFS into several components. By manipulating the number and timing of flashes with respect to the probe, we found that the stronger suppression in CFS is not due to summation between BR and FS but is caused by the summation of the suppression due to multiple flashes. Our results support the view that CFS is not a stronger version of BR but is due to the accumulated suppressive effects of multiple flashes

    The Effect of Common Signals on Power, Coherence and Granger Causality: Theoretical Review, Simulations, and Empirical Analysis of Fruit Fly LFPs Data

    Get PDF
    When analyzing neural data it is important to consider the limitations of the particular experimental setup. An enduring issue in the context of electrophysiology is the presence of common signals. For example a non-silent reference electrode adds a common signal across all recorded data and this adversely affects functional and effective connectivity analysis. To address the common signals problem, a number of methods have been proposed, but relatively few detailed investigations have been carried out. As a result, our understanding of how common signals affect neural connectivity estimation is incomplete. For example, little is known about recording preparations involving high spatial-resolution electrodes, used in linear array recordings. We address this gap through a combination of theoretical review, simulations, and empirical analysis of local field potentials recorded from the brains of fruit flies. We demonstrate how a framework that jointly analyzes power, coherence, and quantities based on Granger causality reveals the presence of common signals. We further show that subtracting spatially adjacent signals (bipolar derivations) largely removes the effects of the common signals. However, in some special cases this operation itself introduces a common signal. We also show that Granger causality is adversely affected by common signals and that a quantity referred to as “instantaneous interaction” is increased in the presence of common signals. The theoretical review, simulation, and empirical analysis we present can readily be adapted by others to investigate the nature of the common signals in their data. Our contributions improve our understanding of how common signals affect power, coherence, and Granger causality and will help reduce the misinterpretation of functional and effective connectivity analysis

    When Do Parts Form Wholes? Integrated Information as the Restriction on Mereological Composition

    Get PDF
    Under what conditions are material objects, such as particles, parts of a whole object? This is the composition question and is a longstanding open question in philosophy. Existing attempts to specify a non-trivial restriction on composition tend to be vague and face serious counterexamples. Consequently, two extreme answers have become mainstream: composition (the forming of a whole by its parts) happens under no or all conditions. In this paper, we provide a self-contained introduction to the integrated information theory (IIT) of consciousness. We show that IIT specifies a non-trivial restriction on composition: composition happens when integrated information is maximized. We compare the IIT restriction to existing proposals and argue that the IIT restriction has significant advantages, especially in response to the problems of vagueness and counterexamples. An appendix provides an introduction to calculating parts and wholes with a simple system

    Spatial attention increases performance but not subjective confidence in a discrimination task

    Get PDF
    Selective attention to a target yields faster and more accurate responses. Faster response times, in turn, are usually associated with increased subjective confidence. Could the decrease in reaction time in the presence of attention therefore simply reflect a shift toward more confident responses? We here addressed the extent to which attention modulates accuracy, processing speed, and confidence independently. To probe the effect of spatial attention on performance, we used two attentional manipulations of a visual orientation discrimination task. We demonstrate that spatial attention significantly increases accuracy, whereas subjective confidence measures reveal overconfidence in non-attended stimuli. At constant confidence levels, reaction times showed a significant decrease (by 15–49%, corresponding to 100–250 ms). This dissociation of objective performance and subjective confidence suggests that attention and awareness, as measured by confidence, are distinct, albeit related, phenomena

    Consciousness and Attention: On Sufficiency and Necessity

    Get PDF
    Recent research has slowly corroded a belief that selective attention and consciousness are so tightly entangled that they cannot be individually examined. In this review, we summarize psychophysical and neurophysiological evidence for a dissociation between top-down attention and consciousness. The evidence includes recent findings that show subjects can attend to perceptually invisible objects. More contentious is the finding that subjects can become conscious of an isolated object, or the gist of the scene in the near absence of top-down attention; we critically re-examine the possibility of “complete” absence of top-down attention. We also cover the recent flurry of studies that utilized independent manipulation of attention and consciousness. These studies have shown paradoxical effects of attention, including examples where top-down attention and consciousness have opposing effects, leading us to strengthen and revise our previous views. Neuroimaging studies with EEG, MEG, and fMRI are uncovering the distinct neuronal correlates of selective attention and consciousness in dissociative paradigms. These findings point to a functional dissociation: attention as analyzer and consciousness as synthesizer. Separating the effects of selective visual attention from those of visual consciousness is of paramount importance to untangle the neural substrates of consciousness from those for attention
    corecore